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The classical Navier-Stokes equation is extended by an Ohmic friction term proportional to v

depending on the adherence lengths A 1λ = α  and B 1λ β=  for eddy-free and turbulent flow, 

respectively. Laminar Hagen-Poiseuille flow is laminar with 0=α . For α  finite is the novel 

category of hyperlaminar flow valid in the whole range of Reynolds numbers D 2Re Re= . In 

circular pipes of radius 2D= /a  are axisymmetric effective velocities v  solutions of a Bessel 

differential equation in agreement with Reynolds’ original experiments and with recent 

measurements. 1000Re Re= =α  is the lowest critical Reynolds number, where Aλ =a , 1=αa . 

For Re Re< α  is the hyperlaminar flow is determined by Aλ >a , 1<αa . For Re Re> α  is the 

hyperlaminar Aλ < a , 1>αa ; the turbulent flow is characterized by B Aλ λ< , β > αa a . In 

summary, the transition process consists in the change of the adherence length from Aλ  to Bλ . 

The Appendix presents a comparison of the logarithmic velocity law with the effective 

velocities. 

 

Keywords: Navier-Stokes equation, velocity profiles, transition to turbulence 

 

 

 

 

 

 

 

 

 

 

a)  Retiree of IBM Research – Zurich, Rüschlikon, Switzerland, and Universidade do Algarve, Faro, Portugal. 

 Email address for correspondence: jaggi.rudolf@yahoo.com. 



 

2 

I. INTRODUCTION 

Osbourne Reynolds’ famous pipe flow experiments1  are still subject of numerous 

investigations. The transition from laminar to turbulent flow is treated in various publications,   

e. g. in books by Schlichting and Gersten 

2  and by White, 3  whereas topical reviews of different aspects have been written by 

Kerswell, 4  Willis et al., 5  Mullin, 6  and Kim. 7  

In appreciation of the foregoing research, a novel effective velocity distribution as 

alternative to the classical logarithmic velocity law will be presented by the following paradigm. 

II. NAVIER-STOKES FLUIDDYNAMICS AND OHMIC FRICTION 

The basis is the classical Navier-Stokes momentum equation extended by the addition of 

an ‘Ohmic’ friction term Ω  proportional to v  

D
μ p

Dt
= ∆ + − ∇ −

v
v g Ωk k . (1) 

The notation is as usual
2, 3 

 with v  the velocity, g  the acceleration of gravity, p  the pressure, 

including the two material properties, the density k  and the viscosity μ  or the kinematic 

viscosity ν μ= /k , disregarding inviscid flows. Continuity is strict 0v∇ =  for incompressible 

fluids inside smooth walls in thermodynamic equilibrium. The total acceleration is the sum of the 

local acceleration and the convection: 

( )
D

Dt t

∂
= + ∇

∂

v v
v v . (2) 

 In Electrodynamics is the frictional force proportional to the velocity v  of the electron 

fluid fundamental for the electric current in normal conductors and Ohm’s law. Benthem and 

Kronig 8  included in the equation of motion the Laplace term μ∆v . The resulting differential 
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equation was applied to the anomalous skin effect 8  and to the dc size effect 9  in agreement with 

experiments. 

 The unity of Physics requires for Fluiddynamics of ordinary fluids also a friction force 

proportional to the velocity v . We introduce the Ohmic friction force density in the form 

2μ=Ω vα  (3) 

with A1 λα= . The characteristic adherence length Aλ  serves as a measure for the adherence of 

the fluid at the wall with regard to the non-slip condition wall 0v =  and the local velocity 

distribution. 

Specifically, for steady horizontal pipe flows, we restrict ourselves to a one-dimensional 

calculus where continuity is guaranteed and the omission of convection is correct. Thus from 

equation (1) remains the stationary extended Navier-Stokes equation10
 

2 1
p

μ
v vα∆ − = ∇ . (4) 

The normalized hyperlaminar adherence length of fully developed pipe flows, 

Aλ =1/αa a , is a function f Re( )  of the classical Reynolds number 

ave ave D 1
  s. v. factor 

2 2

Re
Re

μ ν

 
= = =  

a ak v v
, (5) 

originally defined 1  with radius 2D= = /r a . 

The efficient averaging procedure 2
ave volume rate divided by the cross - section Q π= av  

is of general significance concerning the Reynolds numbers for flows of all kinds in experiment 

and theory. 

The second-order differential equation (4) has the great advantage being linear in v  

which on its part is a function of rα ; it is valid in the entire range of Re , also for turbulent 

flows, in the latter case by substitution of B1β λ=  for A1 λ=α . 
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III. PROFILES OF THE EFFECTIVE VELOCITY v rz( )  

 We consider the axial flow in a circular pipe of radius a , length L ≫ a  and applied 

pressure Ap . In appropriate cylindrical coordinates ( r , z ) with the effective velocity z( )rv  and 

the constant pressure gradient Ap z p L∂ ∂ =−  follows from the stationary equation of motion 

(4) the inhomogeneous Bessel differential equation of zeroth order 

2
2z A

z2

d 1 d 1

dd

z p

r r μ Lr
α+ − =−

v v
v . (6) 

Physics demands that the axi-symmetric problem has the even solution fulfilling the non-slip 

boundary conditions 

A 0
z 2

0

1 I ( )
( ) 1

I ( )

p r
r

Lμ

α

αα

   = − 
   a

v ,   =  r ±a   z( ) = 0±av . (7) 

2 4

0 0I ( ) J ( ) 1
4 64

r r
r i r

2 4

= + + + ...
α α

α α=  and  

4

1 1I ( ) J ( )
192

r r r
r i i r

2 2 4

= 1+ + + ...
2 8

α α α
α α

  =−    
 (8) 

are the modified Bessel functions of the zeroth and first orders, respectively. 

 Knowing the velocity z r( )v  (7) we can calculate all features of interest explicitly. At first 

the important average velocity 

A
ave z A2 2 2

0

Q 1 1
2 d

r

p ν
π r r r Φ Re

Lπ π μ
=

= = ( ) = ( ) =∫ α
α

a
aa a

a

v v  (9) 

where the fluiddynamic conduction function 

1
A

0

2 I ( )
1

I ( )
Φ ( ) = −

α
α

α α

a
a

a a
. (10) 
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By natural normalization z
z

ave

r
V

( )
( ) =ξ

v

v
, 

r
=ξ
a

 and r =α α ξa  results from equation (6) the 

dimension-less Bessel differential equation 

2 2 2
2 2z

z2
A

d 1 d

dd

zV V
V

Φ ( )

α
α

ξ ξ αξ
+ − =−

a
a

a
. (11) 

The solution is for 0 ≤ ≤α ∞a  

0
z

A 0

1 I ( )
( ) 1

I ( )
V

Φ ( )

α ξ
ξ

α α

   = − 
   

a

a a
, 1= ±ξ  wall 0V = , (12) 

z 1

A 0

d ( ) I ( )

d I ( )

V

Φ
= −

( )

ξ α α ξ

ξ α α

a a

a a
, z

axis

d
0  0

d

V
= =ξ

ξ

     
, (13) 

2 2 2
z 0 1

2
A 0 0

d ( ) I ( ) 1 I ( )
0

I ( ) I ( )d

V

Φ
− − <

( )

ξ α α ξ α ξ

α α α ξ αξ

   =  
   

a a a

a a a a
, z( )V ξ  convex. (14) 

 Figure 1 shows the actual symmetric profiles of the normalized effective velocity z ( )V ξ . 

The profile for 0=αa  corresponds to the well known Hagen-Poiseuille paraboloid 

( ) { }2z 2 1V −ξ ξ=  (15) 

where max 2V = . The special case 1=aα  is nearby with maxV =1.960 . For higher values of αa  

the profiles will become increasingly steeper near the wall and flatter near the axis. For 1≫αa  

the profile is becoming uniform. In the extreme → ∞aα  is z 1V = . 

 A direct experimental realization of figure 1 is Nakayama’s beautiful hydrogen-bubble 

visualization of flow in the entrance of a tube [Fig. 1 – 11 of Ref. 3]. 
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FIG. 1. Profiles of the normalized effective velocity ( )zV ξ  vs. ξ  with parameters αa . 

 

 

 

 
 

FIG. 2. Reciprocal normalized adherence lengths Aλ=αa a  and Bβ λ=a a  vs. Re  with two 

Oregon transitions, in logarithmic axes and in linear axes. 
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IV. LAMINAR, HYPERLAMINAR AND TURBULENT FLOW 

 For 0=αa  ist the Hagen-Poiseuille flow (15) solution of equation (11). We reserve the 

notion ‘laminar’ for the case 0=αa . For αa  finite we propose the novel category of 

‘hyperlaminar flow’. 

 In the limit of 1≫αa , according to figure 1, the flow is becoming uniform independent 

of r , with velocity z ave Reν= = av v . Therefore the differential equation (6) is reduced to 

2 A
z

1 p

ν L
=α
k

v , (16) 

3
2 2

A AH2
Re p

ν L
P= =α

a
a

k
. (17) 

The normalized pressure AHP  has to be proportional to 2
Re . We define the hyperlaminar 

k
Re

Re

 
=  
 

αa

α

α

 (18) 

with the exponent 
1

2
k =α , the hyperlaminar reference 1000Re =α  is the lowest critical 

Reynolds number (see Section V). 

 The differential equations (6) and (11) are valid for turbulent velocities too, simply by 

replacing αa  for fully developed flows by 

β

β

k

Re
β

Re

 
=   
 

a  (19) 

with the exponent β

3

7
k =  and the turbulent reference β 100Re = . The definitions (18) and (19) 

yield agreement with the experiments. 
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 Figure 2 presents αa  and βa  up to 1010=Re . Note in the logarithmic plot 
3

6
k =α  and 

β

3

7
k = . At Re Re= α  is 1=αa  and 2.683β =a . In the linear plot two Oregon transitions are 

indicated, where αa  as the first critical Reynolds number C critRe Re=  changes to βa  at the 

second critical Reynolds number BRe . Numerical values have been collected in Table I, Section 

VIII. 

 For Re Re≫ α  is βa  approximating to αa  reaching equality 3
10β = =αa a  at 

9
γ 10Re Re= = . Here we predict the finale of the turbulent pipe flow and the continuation of the 

hyperlaminar flow, with the necessary caution for such enormous Reynolds numbers. 

V. FLOW PROPERTIES 

A. Hyperlaminar flow 

Properties of the hyperlaminar flow are in detail: 

the maximum velocity 

max z
0

1 1
(0) 1

( ) I ( )
V V

Φ

 
= = − 

 α αa a
a

; (20) 

the pressure 

2

A 3
A

1

( )

ν L
p Re

Ψ
=

αaa

k
; (21) 

the norm pressure 

2

N 3

ν L
p =

a

k
, (22) 

N 1 Pascalp =  for water at room temperature with 1 mm=a  and  m= 1L ; 

the fluiddynamic conductivity 
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A
A 2 2

Φ
Ψ

( )
( ) =

α
α

α

a
a

a

; (23) 

the normalized pressure A

N

p

p
=  

A
A

1
Re

Ψ
P =

( )αa
 (24) 

analogous to Ohm’s law of Electrodynamics 

el

1
E J

σ
=

( )α a
, (25) 

where E  is the electric field, 
elσ ( )α a the electric conductivity, and J  the current density; 

the norm kinetic energy pro volume 

2
2 2

N ave 22 2

ν
e Re= =

a

k k
v ; (26) 

the friction factor, defined with pressure Ap Re( )  

A
A

N A

2 4 1p Re
Λ Re

L e ReΨ

( )
( ) = =

( )α

a

a
; (27) 

the fluiddynamic conductance 

A A1G Re Λ Re( ) = ( ) , (28) 

N
A A A

A

250 
2 4

L e Re
G Ψ Φ

p
= = ( ) = ( )α αa a
a

; (29) 

the universal relation between conductance and pressure 

2
A A 4G Re Re G ReP P( ) ( ) = = / . (30) 

Illuminating are the limits of the flow properties. 

B. Limit 1≪αa , Hagen-Poiseuille flow as approximation 

By series expansion of the Bessel functions (8) is 
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2 2 2 2

A 1  ...
8 6

Φ
 

( ) = − ±  
 

α α
α

a a
a , (31) 

subsequently αa  disappears from the exact solutions (12 to 26), and we obtain the well known 

formulas of the dimensional Hagen-Poiseuille-flow as approximations. 

2

z ave 2
2 1

r
r

  
( ) = − 

  a
v v : (32) 

the maximum velocity 

2
AL

max z ave

1
0 2

4

p

µ L
= ( ) = =

a
v v v ; (33) 

the average velocity 

2
AL

ave

1

8

p ν
Re

µ L
= =

a

a
v ; (34) 

the pressure 

AL ave N2
8 8
μL

p p Re= =v
a

; (35) 

the normalized pressure 

AL
AL

N

8
p

Re
p

P= = ; (36) 

the friction factor 

D

32
 Λ

Re Re

 64
= = 

 
; (37) 

the conductance 

AL
32

Re
G = ; (38) 

the GP  relation 

2
AL AL 4G ReP = /  (30).  
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C. Limit 1≫αa , hyperlaminar flow 

For the eddy-free unidirectional flow with Re Re≥ α , ≥ 1αa , we propose the new 

category of ‘hyperlaminar flow’. Then for Re Re< α , <1αa , the flow is ‘laminar’ in a closer 

sense. 

In the extreme → ∞αa , the flow is uniform and independent of r , with velocity 

z ave Re ν= = /av v . Therefore the differential equation (6) is reduced to 

2 2
AH N AH  p p RP e= = α a , which has to be proportional to 2Re  by extrapolation. We define, for 

fully developed flows, 

2 2

1000

Re Re

Re
= =α

α

a  (39) 

with the ‘standard Reynolds number’ 1000Re =α , a round value that is adequate for the present 

approach. 

The hyperlaminar flow obeys the equations (12) to (26), asymptotic solutions are: 

the conduction function 

AH 1Φ = ; (40) 

the conductivity 

AH 2 2

1 1000Re
Ψ

Re Re
= = =
α

α

a

; (41) 

the normalized pressure 

2 2
2 2

AH  
1000

Re Re
Re

Re
P = = =α

α

a ; (42) 

 

the conductance 
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AH 2 2

1
250

4 4

Re Re
G = = =

α

α

a

; (43) 

the GP  relation 

2
AH AH 4G ReP = /  (27). 

D. Turbulent flow 

 The turbulent properties, with their extrapolations for 1≫βa  are: 

the conduction function 

1
B

0

2
1

I β
Φ β

β I β

( )
( ) = −

( )

a
a

a a
, BH 1=Φ ; (44) 

the conductivity 

B
B 2 2

Φ β
Ψ β

β

( )
( ) =

a
a

a

, BH 2 2

1
Ψ

β
=

a

; (45) 

the normalized pressure 

B
B

Re

Ψ β
P =

( )a
, 2 2

BH  Re βP = α ; (46) 

the conductance 

B β
4

Re
G Ψ β= ( )a , BH 2 2

1

4

Re
G

β
=

a

; (47) 

the GP  relation 

2
B B BH BHG P G P 4Re= = /  (27). 

VI. REYNOLDS’ PIPE FLOW EXPERIMENTS 

 Reynolds1  performed two sets of experiments. The first one is shown in his famous three 

figures [page 942 of Ref. 1]. Glass tubes (1 inch, ½  inch, and ¼  inch in diameter), having 

rounded inlets and smooth walls, are immersed in a large tank. The carefully controlled 

undisturbed water is entering the tubes with an axial band-shaped color dye marker. The steady 
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flow is uniform at the entrance 0z =  with average velocity ave   Re ν= av  (9) and norm kinetic 

energy 2
N ave

2
e = 

k
v  (22) due to the applied pressure gradient Ap z p L∂ ∂ = − . 

To be brief in the case of small Re : Within the distance ALz z= , the Hagen-Poiseuille 

profile z r( )v  (29) is formed, for which the kinetic energy pro volume increases to 

2 2
kin z ve N2

r 0

2 4 4
  d

2 3 2 3
e r r r e

=

= ( ) = =∫
a

k k
a

a
v v . (48) 

We suppose that the increase of kinetic energy compensates the decrease of pressure. 

AL
N AL

z
e p

L

1
=

3
. (49) 

With Np  (18), Ne  (22) and ALp  (32) we obtain the normalized entrance length for small Re  

AL

48

z Re
=

a
, 1≪αa . (50) 

 More in detail for all Re : With z( )ξV  (12) is the normalized hyperlaminar kinetic energy 

2
1

A1 2
2kin 0

A z 2
N A0

I
2

I
2 d

Ф
e

E V   
e Ф

=

( )
( ) −

( ) ( )
( ) = = ( ) =

( )
∫

α
α

α α
α ξ ξ ξ

α

a
a

a a
a

aξ

. (51) 

We confirm A 4 3E =  and A 1E =  for 1≪αa  and 1≫aα , respectively. At 0=z  the uniform 

velocity avev  corresponds to → ∞αa ; with increasing z  the undeveloped αa  decreases like in 

figure 1. The flow is fully developed with ( )
1 2

Re Re
/

=αa α  and AE ( )aα  at Az z= . Analogous 

to equation (49) the kinetic energy difference is compensated by a pressure difference, 

( ) A
N A N A1

z
e E p

L
P

( )
( ) − = ( )

α
α α

a
a a . (52) 

With AP  (20), AG  (26) and AE  (52) results the normalized entrance length 
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( )A
A A2 1

z
G E

( )
= ( ) ( ) −

α
α α

a
a a

a
 (53) 

[ A 0z =  for 0Re =  and Re → ∞  smaller than former expectations 3, 12 ]. 

 In the limit of small Re , 1≪αa , we confirm ALz a  (50). For stable laminar flow

Re Re< α  Nakayama’s visualization for 800=Re , 0.894=αa , allows a rough estimate

A 14 2z = ±a , while equation (53) yields A 14.2z =a . For 41.543 10Re = × , 3.928=aα , is the 

maximum A 59.77z =a . Reynolds mentions a value of about 60  for Re  of the order of 41 10× . 

For 51.94 10Re = × , 13.93=aα , Barbin’s entry length value Az / = 30a  [quoted from Ref. 12] 

can be compared with A .59z = 30a  from equation (53). 

 So far, Reynolds’ figure 3 [Ref. 1] with the color band in a straight line shows the eddy-

free situation where thanks to favorable entrance conditions, hyperlaminar flow can persist up to 

high Re . But the hyperlaminar flow is not stable. In Reynolds’ figures 4 and 5, the color band 

mixes with the water showing eddies at a considerable distance Az z=  from the intake for the 

first critical Reynolds number critRe . After the onset of turbulence, the hyperlaminar αa  

changes as a result of fluctuating transition mechanisms to the turbulent βa  for the second 

critical Reynolds number BRe , reaching the turbulent kinetic energy 

2
1

B 2
0

B 2
B

I
2

I

β
Ф β

β
E β

Ф β

( )
( ) −

( )
( ) =

( )

a
a

a
a

a
 (54) 

which is smaller than the hyperlaminar kinetic energy AE ( )αa  (51) .With B AG G<  results the 

turbulent entrance length 

( )B
B B2 1

z β
G β E β

( )
= ( ) ( ) −

a
a a

a
 (55) 
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which is smaller than Az a . 

The entrance of turbulence takes place closer to the intake in accordance with Reynolds 

observations. It is clear that the entrance lengths decreases towards zero for Re → ∞ . 

 In the second setup of experiments, quarter-inch and half-inch lead pipes were used. The 

water entering from the Manchester mean was on purpose highly disturbed, in contrast to the 

first setup. Reynolds plotted the measured pressure-velocity relation on a logarithmic scale. For 

low p  he observed, within small experimental uncertainties, linear Hagen-Poiseuille behavior 

(29) in approximation to the exact laminar relation (7). We have to emphasize that the water was 

in a state of eddy-full disturbance. In our evaluations of the original data, we see the first 

inclination changes in the logarithmic - ReP  plots at crit 1003 10Re = ±  and 1028 15± . 

 Within narrow limits, 1000Re =α  is the lowest critical Reynolds number, a round value 

adequate for the present approach. Reports about crit 1000Re <  require special consideration. In 

the case Re Re< α  it is cruxial that the adherence length Aλ  is larger than the radius a , 1<aα , 

for both eddy-free and eddy-full quasi-turbulent flows in smooth and rough walls. 

For the fully developed turbulent flows, Reynolds derived the pressure law 1.723
avep ∝ v . In 

proximity are the Blasius approximation
2, 3

 1.75
p Re∝  and our result B ReP ( )  (46). 

VII. COMPARISON WITH THE OREGON-PRINCETON EXPERIMENTS 

 Two pipe flow experiments are combined to provide friction factors for a wide range of 

Reynolds numbers.11  In the Princeton Superpipe compressed air is used for 

4 7
D3.13 10 3.55 10Re× ≤ ≤ × . In the Oregon device, with examined smooth pipe wall, for 

6
D11.2 1.05 10Re≤ ≤ ×  several room temperature gases are used: helium, nitrogen, oxygen, 

carbondioxide and sulphurhexafluoride; and at 4.2 K  liquid helium. The entrance of the pipe is 
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first covered by a small screen in the Oregon experiments [Ref. 12]. Upon removal of the screen, 

the critical Reynolds numbers of carbondioxide and sulphurhexafluoride increased by 60 % , 

whereas nitrogen and oxygen remained hyperlaminar even at 6
D 1.05 10Re = × . Measured are the 

temperature, the pressure drop p L , and the mean velocity veu
a

. Tabulated are the Reynolds 

number 

ve
D

Du
Re

ν
= a , 2=D a   [compare Eq. (5)] 

and the friction factor 

2
ve

2

p
Λ D u

L
=

k
a

  [compare Eq. (23)]. 

Reported are experimental errors 2 %  to 4 %  for the Oregon data and 1.1%  for the Princeton 

data. 

 Prandtl derived from the logarithmic velocity law
2, 3

 (see Appendix) the celebrated 

formula 

( )1 2
1 D 21 2

1
 C  log Re Λ C

Λ

/

/
= − . (56) 

McKeon et al.11  proposed a curve fit with 1 1.930C =  and 2 0.537C = , which yielded a von 

Kármán constant 0.421κ = ; the maximum difference between the formula (56) and the 

Princeton data is always less than 1.25 % . 

 Comparison of our approach with the Oregon-Princeton experiments is achieved by 

choosing for each Reynolds number Re  the conductance 1G Λ= /  (origin 0.0), the conductivity 

4Ψ G Re= / , and the pressure Re ΨP = / , where 
2 4G ReP = /  (27). In figure 3, the 

experimental data for hyperlaminar flow up to critRe Re=  are plotted together with the solutions 

AP  (20), AG  (26) and AΨ  (19), and correspondingly the turbulent data for BRe Re>  together 
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with the solutions BP  (46), BG  (47), and BΨ  (45). Within the experimental errors mentioned 

above, there is agreement almost over the entire range of Reynolds numbers. Differences appear 

in the linear plots, where between BRe Re=  and 4
Re ≈ 5×10  the turbulent properties are close to 

the Blasius approximations 
7 4

ReP /∝ , 
4

G Re
1/∝  [Ref. 6 Fig. 2, Ref. 12 Fig. 6], and 

4Ψ Re
−3/∝

. With refernence to figure 2 we realize in figure 3 the intersections 15
A B 1 10P P= = × , 

A B 250G G= = , 6
A B 1 10Ψ Ψ −= = × , and the continuation of the hyperlaminar flow with the 

necessary caution for such enormous Reynolds numbers. 

 We know that that turbulence is a rather complex phenomenon. Otherwise we wonder 

that like Reynolds and McKeon et al. precise and reproducible measurements can be performed 

whose evaluations lead to simple analytic solutions, what is important for research and 

engineering. 
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FIG. 3. Pressure P , conductance G , and conductivity Ψ  vs. Re , in logarithmic axes and in 

linear axes. 

Experimental data: 

 air   Princeton11   2CO  

 He , 2N , 2O , 2CO , 6SF   Oregon screen11   6SF  
Oregon no screen12  author’s copy. 
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VIII. SUMMARY OF THE TRANSITION PROCESS 

In the framework of Ohmic friction is the lowest critical Reynolds number 

1000Re Re= =α a significant landmark between hyperlaminar and turbulent flow. 

If Re Re< α , where adherence length Aλ  is larger than the radius a , 1<αa , no transition 

to turbulence ever occurs, the hyperlaminar flow obeying equation (7 or 12) is stable to the best 

of experimental and theoretical knowledge. 

If Re Re≥ α , 1≥αa , favorable conditions at the entrance 0z =  (e.g. carefully rounded 

inlet, smooth wall and steady undisturbed fluid) allow hyperlaminar flow to continue to high Re , 

but hyperlaminar flow is not longer stable. Critical entrance conditions (indefinite peculiarities) 

cause the onset of turbulence to occur after a entrance length Az  for the first critical Reynolds 

number critRe , which cannot be predicted exactly. By increasing Re , the hyperlaminar aα  

changes under fluctuating disturbances to the larger turbulent βa  at the smaller entrance length 

Bz  for the second critical Reynolds number BRe  where the turbulent flow is fully developed. 

The pressure BP  is higher than AP , and consequently the conductivity BΨ , the conductance BG  

and the kinetic energy BE  are lower than the respective hyperlaminar values AΨ , AG  and AE . 

Numerical data of the Oregon experiments are compiled in Table I. 

 

 

 

 

 

 

TABLE I. Transition data of the Oregon experiments. 
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Screen entrance Open entrance 

critRe = 
31.440 10×  BRe

 = 
31.540 10×  critRe = 

3102.330 ×  BRe = 
3102.500×  

AP = 1041.427×  BP
 = 1043.157×  AP = 1042.580×  BP = 1046.673×  

AG = 
1103.634×  BG

 = 
1101.878×  AG = 

1105.261×  BG = 
1102.341×  

AΨ = 10−11.009×  BΨ  = 10−24.878×  AΨ = 
29.032 10−×  BΨ = 10−23.746×  

AE = 1.315  BE  = 1.243  AE = 1.304  BE = 1.216  

aα = 1.200  βa  = 3.123  aα = 1.526  βa = 3.846  

Aλ = mm1.947  Bλ  = mm0.748  Aλ = mm1.530  Bλ = mm0.607  

Az = mm53.43  Bz
 = mm21.28  Az = mm74.81  Bz = mm23.59  

a = 2.336 mm  
B

A

λ

λ
 
= 0.384    

B

A

λ

λ
= 0.397  

 

 In summary, the transition process consists in the change of the adherence length 

from Aλ  to Bλ . 

Supplementary we note in the same spirit: At the exit of any tube we can observe in the 

unbounded flow a hyperlaminar eddy-free zone of considerable length before turbulence sets in. 

IX. OUTLOOK 

Generally the complete Navier-Stokes equation (1) permits the computation of multi-

dimensional and time-dependent velocities of streams unbounded or in smooth and rough walls, 

respectively, concerning the phenomenology of Fluiddynamics. The introduction of Ohmic 

friction with hyperlaminar and turbulent adherence lengths hopefully paves the way to a 

microscopic explanation of the transition to turbulence. 

The application of the linear equation (4) to stationary internal and external flows of 

different geometries is straightforward. The solutions of four examples shall be given in brevity: 

1. In Cartesian coordinates, two parallel planes, 9  ≫L a , at x = ±a , boundary condition 

  z 0(± ) =av , 
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 A
z 2

1 cosh( )
( ) 1

cosh( )

p x
x

Lμ

 
= − 

 

α

αα a
v , zd

0
d

x
x

= 0  =
v

, (57) 

 
2 2

A
z 2

1
1

2

p x
x

μ L

  
( ) = − 

  

a

a

v , z max ave

3

2
(0) = =v v v   laminar 1≪aα , 

 analogous to z r( )v  (7 and 29) in cylindrical coordinates. 

2. A channel with z 00( ) =v v  at a free surface 0=x  over a flat-plate at =x h  with z 0h( ) =v , in 

 exponential approximation of hyperbolic functions 

 { }z 0 1 expx x h( ) = − ( − )α αv v   hyperlaminar 1≫hα . (58) 

3. Antisymmetric plane Couette flow, boundary conditions x = ±a  z(± ) = ±av v
a

, 

 z

sinh

sinh

x
x

( )
( ) =

( )

α

αa
v v

a
, (59) 

 z

x
x( ) =

a
v v

a
  laminar 1≪aα . 

4. Cylindrical symmetries, e. g. the liquid in a rotating cylinder, L≫ a , boundary condition 

r =a  φ ω( ) =a av , 

  1
φ

1

I

I

r
r ω

( )
( ) =

( )

α

α
a

a
v , (60) 

 φ r ωr( ) =v  ‘rigid body’ rotation only if 0→αa . 

Finally the force per unit length on a cylinder, ≫L a , moving in a fluid can be calculated 

without convection by means of Hankel functions,10  the problem of Stokes’ paradox is avoided 

thanks to Ohmic friction. 
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APPENDIX 

LOGARITHMIC AND EFFECTIVE VELOCITIES 

 For turbulent pipe flow derived by dimensional analysis in wall coordinates y r= −a , 

which are adopted from the flat-plate problem, is the one-dimensional logarithmic velocity 2, 3  

τ
τ

1
ln

u
u y u  y B

κ ν

 
( ) = + 

 
. (A 1) 

Dimensionless by the wall friction velocity 

1 2

wall
τ

τ
u

/
 

=  
 k

, (A 2) 

originally defined with the wall-shear stress wallτ , is the usual formulation of the classical 

logarithmic velocity law 

τ

1
ln 

u y
U Y Y B

u κ

+ + +( )
( ) = = + , (A 3) 

τu y
Y y Re

ν

+ += =
a

, (A 4) 

τ τ

ave

u u
Re Re

ν u

+ = =
a

, (A 5) 

τ

ave

Re u

Re u

+

= , (A 6) 

κ  is the von Kármán constant, B  the additive constant. 

 Omitting several approximations in the near-wall and wake regions, integration in the 

limits 0y =  and y =a  yields the average velocity 

2 2

y 0

1
2 d

Q
π y u y y

π π
=

= ( − ) ( )∫ a
a a

a

, (A 7) 



 

23 

τ
ave τ

1 3
ln

2

u
u u  B

κ ν κ

 
= + − 

 

a
. (A 8) 

Prandtl derived from this average the famous implicite formula (56) for the friction factor Λ ; the 

explicite formula (47) for the conductance 1G Λ= /  agrees as proved in Section VII. Equation 

(A 8) becomes by division with aveu  and introduction of Re+  (A 5, A 6) 

1

1 3
ln 1

2

Re
Q Re  B

Re κ κ

+
+ 

= + − = 
 

. (A 9) 

Princeton Superpipe data
13  14,

 for 
63.0 10Re = ×  with three parameters 

5.0 10Re+ =1 ×  (like Re  

rounded by the author), 0.391κ =  and 4.34B =  yield 1 0.998  0.2 %Q = (− ) , a valuable test. 

Determined from the pressure drop in the pipe14  (instead from wallτ ) is the wall friction velocity 

τ 23.5 m su = / . From Re+  follows with 5 21.55 10  m sν −= × /  and 26.45 10  m−= ×a  

τ 24.0 m su Re ν+= / = /a , (A 10) 

ave τ 720 m su u Re Re
+= / = / . (A 11) 

From Re  follows 

ave ave 720 m sRe ν u= / = / =av . (A 12) 

 The normalized turbulent effective velocity is analogous to zV ( )ξ  (12) with one known 

parameter 82.94β =a  

0
z

B 0

1 I
1

I

β
V

Φ β β

 ( )
( ) = − 

( ) ( ) 

a

a a

ξ
ξ . (A 13) 

For comparison the dimensional logarithmic velocity u y( )  (A 1) will be normalized by a  and 

aveu , so that 

τ τ

ave ave

1
ln

u y u u y
 B

u u κ ν

( )  
= + 

 

a

a
, (A 14) 
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z

ave

1
ln 

u y Re
W η Re η B

u Re κ

+
+( )  

( ) = = + 
 

, (A 15) 

z

Re
W η U

Re

+
+( ) = , (A 16) 

y Y
η

Re

+

+
= =
a

; 1
r

η= = −
a

ξ . (A 17) 

Figure A1a shows in linear axes zW η( )  and zV ( )ξ  for 63.0 10Re = × , 82.94β =a , with 

steep slopes near the wall. For 0.1η >  is z 1.025V ( ) ≈ξ  allmost constant, whereas zW η( )  

increases to axis 1.126W = . 

In figure A1a is included particularly for Re → ∞  the constant velocity z 1V = . This 

generally accepted solution is applied in Section IV and V. It is experimentally verified by the 

hydrogen-bubble visualization quoted in Section III. 

Figure A1b displays zW  in semilogarithmic axes [corresponding to Fig. 4 of Ref. 13] as a 

straight line from 6
0 21.83 10η −= × , z 0W = , up to 1η = , z axisW W= , with three intersections 

at 1 61.83 10η −6= × , 4
z z 1.52 10W V −= = × , 

at 2
2η

−=1.79×10 , z z 7.83 10W V
−1= = × , 

at 3 3.06 10η −1= × , z z axis1.025W V V= = ≈ . 

 Figures A1c and A1d present the derivatives 

zd ) 1

d

W η Re

η Re κη

+(
= , (A 18) 

z 1

B 0

d ) I

d I

V β β

Φ β β

( ( )
=

( ) ( )

a a

a a

ξ ξ

ξ
. (A 19) 

Both decrease near the wall, for 0.1η >  they approach zero, for 1η =  is ( )z axis
d d 0V =ξ  exact. 
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Fig A1. Comparison of logarithmic velocity zW η( )  with effective velocity zV ( )ξ  for 

63.0 10Re = × . 

 

(d)

axis

(c)

wall

(b)(a)
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The averages of the different velocities zW η( )  and zV ( )ξ  are equal: 

1

W z

η 0

2 1 dQ W η η η

=

= ( )( − ) =1∫ , (A 20) 

1

V z

0

2 dQ V

=

=  ( )  =1∫ ξ ξ ξ

ξ

. (A 21) 

Considerable differences appear at the wall and at the axis of the pipe: 

at 0η = , wallW = −∞ , z

wall

d

d

W

η

 
= ∞ 

 
; (A 22) 

at 1=ξ , wall 0V = , z

wall

d
82.63

d

V 
= 

 ξ
; (A 23) 

at 1η = , axis 1.126W = , 2z

axis

d
8.525 10 0

d

W

η

− 
= × ≠ 

 
; (A 24) 

at 0=ξ , axis 1.025V = , z

axis

d
0

d

V 
= 

 ξ
 exact. (A 25) 

 Physics demands at the wall non-slip and finite shear-stress, at the axis flat profiles with 

derivatives ( )z axis
d d 0V =ξ  in accordance with figure 1 for all Reynolds numbers Re , not only 

in restricted regions. Consequently Pitot probes should yield effective velocities by adequate 

calibration. 

 All physical criteria have to be fulfilled. Well founded for hyperlaminar and turbulent 

viscous pipe flows are the effective velocities zV  as symmetric solutions of the extended Navier-

Stokes equation valid in cylindrical coordinates from axis to wall over the entire range of 

Reynolds numbers with respective adherence lengths in agreement with the experiments, 

alltogether thanks to Ohmic friction. 
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